Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 36(3): 605-625, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38079275

RESUMO

Drought stress limits crop yield, but the molecular modulators and their mechanisms underlying the trade-off between drought resistance and crop growth and development remain elusive. Here, a grain width and weight2 (GW2)-like really interesting new gene finger E3 ligase, TaGW2, was identified as a pivotal regulator of both kernel development and drought responses in wheat (Triticum aestivum). TaGW2 overexpression enhances drought resistance but leads to yield drag under full irrigation conditions. In contrast, TaGW2 knockdown or knockout attenuates drought resistance but remarkably increases kernel size and weight. Furthermore, TaGW2 directly interacts with and ubiquitinates the type-B Arabidopsis response regulator TaARR12, promoting its degradation via the 26S proteasome. Analysis of TaARR12 overexpression and knockdown lines indicated that TaARR12 represses the drought response but does not influence grain yield in wheat. Further DNA affinity purification sequencing combined with transcriptome analysis revealed that TaARR12 downregulates stress-responsive genes, especially group-A basic leucine zipper (bZIP) genes, resulting in impaired drought resistance. Notably, TaARR12 knockdown in the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated tagw2 knockout mutant leads to significantly higher drought resistance and grain yield compared to wild-type plants. Collectively, these findings show that the TaGW2-TaARR12 regulatory module is essential for drought responses, providing a strategy for improving stress resistance in high-yield wheat varieties.


Assuntos
Sementes , Triticum , Sementes/genética , Triticum/metabolismo , Resistência à Seca , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Grão Comestível/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plants (Basel) ; 12(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447026

RESUMO

Gene duplication is a universal biological phenomenon that drives genomic variation and diversity, plays a crucial role in plant evolution, and contributes to innovations in genetic engineering and crop development. Duplicated genes participate in the emergence of novel functionality, such as adaptability to new or more severe abiotic stress resistance. Future crop research will benefit from advanced, mechanistic understanding of the effects of gene duplication, especially in the development and deployment of high-performance, stress-resistant, elite wheat lines. In this review, we summarize the current knowledge of gene duplication in wheat, including the principle of gene duplication and its effects on gene function, the diversity of duplicated genes, and how they have functionally diverged. Then, we discuss how duplicated genes contribute to abiotic stress response and the mechanisms of duplication. Finally, we have a future prospects section that discusses the direction of future efforts in the short term regarding the elucidation of replication and retention mechanisms of repetitive genes related to abiotic stress response in wheat, excellent gene function research, and practical applications.

3.
Life (Basel) ; 10(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423169

RESUMO

The aerobic adaptation of upland rice is considered as the key genetic difference between upland rice and lowland rice. Genetic dissection of the aerobic adaptation is important as the basis for improving drought tolerance and terrestrial adaptation by using the upland rice. We raised BC1-BC3 introgression lines (ILs) in lowland rice Minghui 63 (MH63) background. The QTLs of yield and yield-related traits were detected based on ILs under the aerobic and lowland environments, and then the yield-related QTLs were identified in a backcrossed inbred population of BC4F5 under aerobic condition. We further verified phenotypes of QTL near-isogenic lines. Finally, three QTLs responsible for increasing yield in aerobic environment were detected by multiple locations and generations, which were designated as qAER1, qAER3, and qAER9 (QTL of aerobic adaptation). The qAER1 and qAER9 were fine-mapped. We found that qAER1 and qAER9 controlled plant height and heading date, respectively; while both of them increased yields simultaneously by suitable plant height and heading date without delay in the aerobic environment. The phenotypic differences between lowland rice and upland rice in the aerobic environment further supported the above results. We pyramided the two QTLs as corresponding molecular modules in the irrigated lowland rice MH63 background, and successfully developed a new upland rice variety named as Zhongkexilu 2. This study will lay the foundation for using aerobic adaptation QTLs in rice breeding programs and for further cloning the key genes involved in aerobic adaptation.

4.
J Integr Plant Biol ; 62(11): 1659-1673, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32396254

RESUMO

WRKY12 and WRKY13 are two WRKY transcription factors that play important roles in the control of flowering time under short-day (SD) conditions. The temporally regulated expression of WRKY12 and WRKY13 indicates that they may be involved in the age-mediated flowering pathway. However, their roles in this pathway are poorly understood. Here, we show that the transcription of WRKY12 and WRKY13 is directly regulated by SQUAMOSA PROMOTER BINDING-LIKE 10 (SPL10), a transcription factor downstream of the age pathway. Binding and activation analyses revealed that SPL10 functions as a positive regulator of WRKY12 and a negative regulator of WRKY13. Further mechanistic investigation revealed that WRKY12 and WRKY13 physically interact with SPL10 and that both of them bind to the promoter of miR172b. Thus, the WRKY12-SPL10 and WRKY13-SPL10 interactions facilitate and inhibit SPL10 transcriptional function, respectively, to regulate miR172b expression. Together, our results show that WRKY12 and WRKY13 participate in the control of age-mediated flowering under SD conditions though physically interacting with SPLs and co-regulating the target gene miR172b.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sítios de Ligação , Flores/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética
5.
Front Plant Sci ; 9: 331, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29616054

RESUMO

Male gametogenesis in plants is tightly controlled and involves the complex and precise regulation of transcriptional reprogramming. Interactions between WRKY proteins and VQ motif-containing proteins are required to control these complicated transcriptional networks. However, our understanding of the mechanisms by which these complexes affect downstream gene expression is quite limited. In this study, we found that WRKY2 and WKRY34 repress MYB97, MYB101, and MYB120 expression during male gametogenesis. MYB expression was up-regulated in the wrky2-1 wrky34-1 vq20-1 triple mutant during male gametogenesis. The expression levels of six potential targets of the three MYBs increased the most in the wrky2-1 wrky34-1 vq20-1 triple mutant, followed by the wrky2-1 wrky34-1 double mutant, compared with in wild-type. Yeast one-hybrid and dual luciferase reporter assays indicated that WRKY2 and WRKY34 recognized the MYB97 promoter by binding to its W-boxes. MYB97 overexpression caused defects in pollen germination and pollen tube length, which impacted male fertility. Thus, WRKY2/34-VQ20 complexes appear to negatively regulate the expression of certain MYBs during plant male gametogenesis.

6.
Plant J ; 91(6): 962-976, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28635025

RESUMO

Plant male gametogenesis is tightly regulated, and involves complex and precise regulations of transcriptional reprogramming. WRKY transcription factors have been demonstrated to play critical roles in plant development and stress responses. Several members of this family physically interact with VQ motif-containing proteins (VQ proteins) to mediate a plethora of programs in Arabidopsis; however, the involvement of WRKY-VQ complexes in plant male gametogenesis remains largely unknown. In this study, we found that WRKY2 and WKRY34 interact with VQ20 both in vitro and in vivo. Further experiments displayed that the conserved VQ motif of VQ20 is responsible for their physical interactions. The VQ20 protein localizes in the nucleus and specifically expresses in pollens. Phenotypic analysis showed that WRKY2, WRKY34 and VQ20 are crucial for pollen development and function. Mutations of WRKY2, WRKY34 and VQ20 simultaneously resulted in male sterility, with defects in pollen development, germination and tube growth. Further investigation revealed that VQ20 affects the transcriptional functions of its interacting WRKY partners. Complementation evidence supported that the VQ motif of VQ20 is essential for pollen development, as a mutant form of VQ20 in which LVQK residues in the VQ motif were replaced by EDLE did not rescue the phenotype of the w2-1 w34-1 vq20-1 triple-mutant plants. Further expression analysis indicated that WRKY2, WRKY34 and VQ20 co-modulate multiple genes involved in pollen development, germination and tube growth. Taken together, our study provides evidence that VQ20 acts as a key partner of WRKY2 and WKRY34 in plant male gametogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Transporte/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/crescimento & desenvolvimento , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA